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Two-Phase Power Dissipation Applications
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Control of Phase Change Heat Transfer

e Boiling heat transfer for high-power, dense
electronic systems

e Heat transfer is limited by two primary
processes

» Vapor formation and removal rates (critical heat flux)

» Condensation rate
e Boiling and condensation present different
design challenges

» Bolling: increase CHF, decrease surface superheat

» Condensation: enhance in bulk fluid for efficient
thermal packaging

e Acoustic control of 2-phase boiling processes

» At heater surface control of vapor growth, spreading,

and advection

— Surface force engendered by high-frequency
ultrasound

— Used in conjunction with complex boiling geometries

» In bulk fluid control of condensation

— Acoustic actuation couples to surface Faraday waves
or via radiation pressure force and droplet ejection

— Pool boiling and nozzle condensation geometries
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Acoustic Actuation of Liquid/Gas Interface

e Interfacial coupling varies substantially with
actuation wavelength

e Ultrasonic [O(1 MHz)] liquid/gas interfacial actuation

» Short actuation wavelength [O(1 mm)]

— Exploits acoustic surface force to effect interfacial
detormations and injection of a liquid jet and droplets

» }”acoust =0.9 mm; Dres =2 pum; 7bcapillary = O(“m)
» Impedance mismatch
Zvaporlzwater: 1 : 8Xlo-4
» High acoustic absorption coefficient
- aHZOvapor ~ 11000 aHZOquuid
Amplitude = 6.82:103 kPa peak-to-peak
Forcing affects vapor bubbles larger than D, - $

e O(1 kHz) liquid/gas interfacial actuation

» Long actuation wavelength [O(1 m)]

— Much larger than the characteristic length scale of the :
vapor bubbles [O(5-10 mm)] g Video Presented Here

— Forces capillary surface waves to enhance mixing of the
interfacial thermal boundary layer

» Macoust = 1.9 M; Dpeg =5.5 mm; }\'capillary = O(mm)
— Significant disturbances

» Amplitude = 5 kPa peak-to-peak

» Bjerknes body forces affect bubble’s path
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Acoustically Controlled Boiling:

K\ Experimental Setup

Variation of Critical Heat Flux with Bulk Temperature
Articulated acoustic
transducer 180

Controlled bulk
temperature
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e Heated surface design
» Cartridge heater and thermocouples Distilled water
» Exchangeable heater surfaces 1 atm
— Plain 93°C bulk temperature

— Plain, instrumented with surface-soldered
thermocouples
— Microchannel grid
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Ultrasonic Control of Vapor at Surface
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Video Presented Here

Vapor removal at surface
50 W/cm?

High-frequency acoustic actuation

» Increases surface temperature (7 °C)
— Detaches small scale vapor bubbles

— Suppresses vaporization process at most nucleation
sites

» Increases CHF by 65%
— Agreement with wire experiments of Isakoff (1956)



Ultrasonic Control of the Boiling Curve
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Effect of Actuator Incidence Angle

AT as function of A T

Actuator Position
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microChannel Design: More than Surface Area
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-1 mm

Small-scale acoustic actuation within
uChannels

»

»

»

»

»

Decreases surface temperature (~ 7 °C).
Increased power dissipation AP =~ 200
Wicm? at T, - T, =17 °C

Increases CHF by 31%

Decreases surface temperature
fluctuations.

Increase CHF by 318% relative to smooth,
unactuated case
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O(1 kHz) Acoustic Enhancement of Bolling
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e Marginal increase in CHF (16%)
Decrease in surface superheat of ~1 °C 80

e Appearance of vapor is markedly
different due to surface capillary waves

» Increased condensation has minimal effect
on boiling process 100
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Acoustic Control of Vapor Condensation

— 1 mm

e Pool boiling and condensers both

require enhanced condensation

» Pool boiling used in heat sink applications
— Vapor boils and condenses in close proximity

» Condensers used in power cycles
— Vapor is injected; boiling occurs in separate
boiler component
— Nozzle geometry interacts with vapor
formation and acoustic enhancement

e Condensation is limited by interface

alea
» Thermal boundary layer surrounds vapor Condensanen
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Acoustically Controlled Condensation
Experimental Setup

e Vacuum pump sets the Q—) vacum pump
ambient pressure in test cell Tank
e Middle plate separates e 108cm -
boiling from condensation - Distilled water
» Nozzle geometry can be u 0.15-1 atm
varied

» Bulk temperature of upper -
tank controlled with coil heat
exchanger (not shown)

» Immersion heater creates
vapor in lower tank

steam reservoir

e Acoustic actuators:
» 1 kHz, placed to sides of $
nozzle
» 1.7 MHz, oriented either L . T
above or to side of nozzle

nozzle nozzle nozzle
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Acoustically Enhanced Bubble Condensation
Low Frequency (1 kHz)

nozzle

steam reservoir

1

VIV,

0.19

0 500 t/TQTO 10200

Vapor Area
* =
Average Baseline Vapor Area

T,: acoustic actuation period = 1 msec
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Increased thermal interfacial mixing leads to rapid collapse.

Base Flow

Actuated

Video Presented Here

Video Presented Here

=~ 3

e T

25 °C subcool 225 W
Continuous Actuation (Atmospheric Pressure)



Boundary Layer Growth - kHz Condensation

e Image processing of Schlieren 100 ‘W)
images yields quantitative
information on boundary layer
growth

e Thermal boundary layer in
baseline flow does not undergo
appreciable growth

» Heat transfer occurs primarily 0_10
through lower (and

2 _ Average Instantaneous Thickmness

1(X, yir 1)

80 |

subsequently, inner) interface % 4 )
e Acoustic actuation leads to S
nearly linear growth of X 2 o e
boundary layer thickness = ok
» No significant temporal —_
dependence on acoustic 8, et
actuation = 4 0" — , : ,
e Thermal boundary layer in ~ 2 0 8 5 510
presence of acoustic actuation = > |« : e
IS on average 6.7 times thicker = 0 e 1 T 0 9
» Up to 17 times thicker X (mm) X (mm)
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Natural Deformation-Induced Vapor Collapse

e Surface tension pinch-off
drives a liquid “spear”
through the center of the
vapor bubble to form a vapor
torus that leads to rapid
condensation.

e Schlieren imaging shows
insignificant thermal
gradients in fluid surrounding
bubble.

» Inner “spear” enhances heat
transfer

e This natural mechanism
indicates that inducing such
a liquid “spear” early in the
bubble formation process
can lead to accelerated
condensation.

Video Presented Here

nozzle

steam reservoir
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Ultrasonic Liquid-Gas Interfacial Actuation

o f=1.7 MHz
~ }‘acoust =0.9 mm; Dres =2 pm
~ }”capillary = O(Hm)
» “Mist” droplets ejected, visible in
video
e Cavitation and subsequent
collapse generates additional
droplets
» Larger-scale; not uniformly sized

e Acoustic impedance mismatch
» Zvaporlzwater:1'8X10_4

» Surface deforms from acoustic
pressure

— Deformed surface self-focuses
acoustic intensity
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Condensation Enhancement; Pulsed Ultrasound

Significant savings in actuation power

- 6 °C subcool
- 20 W
20 ms pulse

]

—

A
Phototransistor

.
L

— trigger

steam reservoir

Pulsed actuation.
» Saves power
» Minimizes interference with vapor ejection
» Vapor ejection pressure remains unchanged
Pulse actuation is synchronized to “natural” bubble

formation.
» Bubble phase reference is obtained using a trigger laser
beam at given height above nozzle
» Actuation wavefronts are monitored using Schlieren imaging
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Schlieren Imaging
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Video Presented Here
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Axially-Aligned Pulsed Ultrasound Actuation +

Triggering laser diode

5 mm above nozzle nozzle
Q=225W
T, =50 ms steam reservoir

Subcooling = 25 °C

High-speed video image processing yields
an estimate of total vapor domain as

function of time.
»  Subcooling and heater dissipation are
invariant, leading to the relation between
vapor domain and heat transfer coefficient.

Qpase = Ubase,effAbase,eff(Tsat —Ts) =
UAact,eff(Tsat —T5) = Qact

yields Ugctefr _ Apaseeff

Ubase,eff Aact,eff

e Vapor domain reduced by up to 73% using 20 ms actuation pulses.

e Actuation “regularizes” time-periodic bubble formation.

» The base flow a new bubble is ejected while the earlier bubble collapses
» In the presence of actuation, bubble collapse is completed prior to ejection of the

A* Base Vapor
1+
Ultrasonic Vapor
0.27 |
2 t/T,
» HTC increased by 270%
subsequent bubble
Georgialnsiftute
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Bubble Volume Tracking
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Temporal Variation:
Heat Transfer Coefficient and Heat Rate

U (W/m?K) _—
6 . 1 04 actuation
e Peak heat transfer f

coefficient occurs 4-104 - ’ (\

during toroidal breakup , ‘

in the absence and 2-104 A

presence of actuation. M"\‘m 1

»  Acoustic actuation leads 0 - MNWA ‘*
to near-immediate | | | | | | VUU

doubling of HTC - (W
e Peak heat rate occurs q (W) 120

during pinch-off, torus
formation, and toroidal 80
breakup

e Non-spherical effects
»  Lower peaks and higher 40

troughs /‘Mk
I
0
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Interfacial Disturbances by ¥

Secondary Droplet Ejection

.
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Video Presented Here

Base Flow Pulsed Ultrasound Actuation

e High-resolution Schlieren imaging reveals formation of ultrasonically induced
droplet ejection from spear.
e Required mass for complete phase change:
Myroplets = E/(Cp'AT) = [(Vo/Vg)'hfg]/(Cp'AT)
®  My,nets PEI pulse: 0.0207 gram/pulse.
» Can contribute up to 60% at low subcooling (8 °C), small bubbles or 45% at high
subcooling (25 °C), large bubbles

Georgianstifiuie
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Particle Image Velocimetry

y elevation for interpreting
wake after bubble collapse -
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e Fluorescent Particles and optical filter to reduce laser reflections
e Algorithmic masking to remove interface/ non-particle-laden flow

e Post processing: 10,000 fps flow fields temporally averaged over 0.5 ms (5 frames)
» Rightward of bubble is masked to remove interior and bubble shadow

off Technologyy 8 °C subcool, 20 W, 20 ms pulse
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Naturally Condensing Vapor Bubbles

Plotting
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Acoustically Actuated Vapor Bubbles

Plotting
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Centerline Velocity

Base Flow Actuated Flow
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High-Subcooling, High-Mass Flow Rate Vapor

Base Flow Actuated Flow

y/d,
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General Conclusions

e Acoustic actuation is an effective method for

controlling two-phase flows with heat transfer.

» Interfacial coupling varies with actuation wavelength
— Low frequency, O(1 kHz); long wavelength =1 m
— High frequency, O(1 MHz); short wavelength = O(1 mm)

» The acoustic coupling forces liquid-vapor interfacial motion
that affects vapor formation, advection, and condensation.

» Strongly enhances pool boiling heat transfer.

» Accelerates direct-contact vapor condensation.
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Conclusions: Boiling

e Ultrasonic actuation (short wavelength).

» Couples to vapor bubbles by a surface force.

» Vapor bubble nucleation, growth, and detachment are
modified.

» CHF increases by 65%; surface temp. increases by 7 °C.

» Condensation increases above the boiling surface.

» Actuation may be turned on and off as needed without a
drop in performance.

e Textured surfaces with ultrasonic actuation.

» Microchannels alone increase CHF to 350 W/cm?.
— Ultrasound increases CHF to 460 W/cm?.
» Ultrasound reduces surface superheat by 7 °C (in contrast to

smooth heater).
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Conclusions: Condensation

e O(1 kHz) acoustic actuation (long wavelength).

» Interfacial Faraday waves increase condensation in the bulk liquid.

» Interface motion induces a temporally-growing thermal boundary
layer.

» Condensation rate is increased both during growth and after
advection, with increases of up to 425% in the time-averaged
overall heat transfer coefficient.

» Importance of motion in inducing mixing implies effectiveness
scales with surface displacement.

— Lower frequencies (1 kHz or below).
— Prior work used either extremely low (50 Hz) or high (20 kHz)
frequencies, with smaller improvements in HTC.
e Ultrasonic acoustic actuation (short wavelength).

» Subcooled liquid jet protrudes into vapor bubble, significantly
increasing vapor surface area and heat transfer coefficient.

» Formation of toroidal volume leads to rapid bubble collapse.

» Pulsed actuation causes up to a 73% reduction in vapor extent.
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